Exploiting Undefined Behavior in C/C++ Programs for
Optimization: A Study on the Performance Impact

LUCIAN POPESCU, Politehnica University of Bucharest, Romania and INESC-ID / Instituto Superior
Técnico, University of Lisbon, Portugal
NUNO P. LOPES, INESC-ID / Instituto Superior Técnico, University of Lisbon, Portugal

The C and C++ languages define hundreds of cases as having undefined behavior (UB). These include, for
example, corner cases where different CPU architectures disagree on the semantics of an instruction and the
language does not want to force a specific implementation (e.g., shift by a value larger than the bitwidth).
Another class of UB involves errors that the language chooses not to detect because it would be too expensive
or impractical, such as dereferencing out-of-bounds pointers.

Although there is a common belief within the compiler community that UB enables certain optimizations
that would not be possible otherwise, no rigorous large-scale studies have been conducted on this subject. At
the same time, there is growing interest in eliminating UB from programming languages to improve security.

In this paper, we present the first comprehensive study that examines the performance impact of exploiting
UB in C and C++ applications across multiple CPU architectures. Using LLVM, a compiler known for its
extensive use of UB for optimizations, we demonstrate that, for the benchmarks and UB categories that we
evaluated, the end-to-end performance gains are minimal. Moreover, when performance regresses, it can often
be recovered through small improvements to optimization algorithms or by using link-time optimizations.
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1 Introduction

The C programming language, now over 50 years old, carries with it a significant amount of
historical legacy. One of the key design choices made by its creators was to ensure that C programs
could run efficiently across all hardware platforms available at the time [9]. This required that each
language construct, such as an integer addition, be translatable into a single assembly instruction
in order to maximize performance on the relatively simple and slow CPUs of that era.

As a consequence of this design goal, the language was standardized to reflect only the least
common denominator semantics of several CPU architectures. For instance, although two’s com-
plement arithmetic is now universally adopted, it was not at the time. This led both C and C++ to
define signed integer overflow as undefined behavior (UB), granting compilers the flexibility to
map arithmetic operations to a single assembly instruction across most CPU architectures.

While all modern CPUs implement two’s complement arithmetic, theoretically allowing the
C/C++ standards to define all cases of integer overflow, certain disparities between CPU archi-
tectures persist. For example, the result of a shift by an amount equal to or greater than the
bitwidth varies between ARM and x86. Standardizing one behavior over the other would necessitate
additional instructions for some architectures, undermining the original goal of efficiency.

In addition to handling CPU architecture differences, the C and C++ standards use UB to avoid
mandating the detection of certain errors that would be too costly or impractical to detect. For
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example, detecting out-of-bounds memory accesses would require emitting additional code, which
would likely reduce performance, contrary to the languages’ design goals.

Over time, compiler developers realized that UB could be leveraged for more than just eliminating
a few assembly instructions. For instance, the UB in integer overflows allows compilers to optimize
a + b > aintob > 0. While this transformation is correct for pure integers, it does not hold in
two’s complement arithmetic. Ironically, such expressions are often incorrectly used to check if
a + b overflows, leading to unexpected results.

Another example where compilers take advantage of UB in integer overflows for optimization is
demonstrated in the following program (shown on the left):

long n2 = (long)n;

for (long i=0; i <= n2; ++i) {
*(a + 1) = 42;

}

for (int i=0; i <= n; ++i) { for (int i=0; i <= n; ++i) {
alil = 42; *(a + (long)i) = 42;
} }

When compiling the left program for a 64-bit CPU, compilers must generate assembly code that
resembles the program in the middle because pointers have 64 bits while the int type is usually
defined to have just 32 bits. This results in an implicit cast in the original program.! Changing the
induction variable i to have 64 bits and removing the sign-extend cast from the loop body (program
on the right) improves the performance of this loop by up to 40% in some micro-architectures.
However, this transformation is only legal because integer overflow is UB, and therefore the
compiler is allowed to assume there is no overflow.

Over time, compilers have evolved to exploit UB for optimization, operating under the assump-
tion that programs are well-defined. However, real-world programs often contain bugs that can
trigger UB. A notable example (below) from the Linux kernel highlights the dangers of such opti-
mizations [10]. Since dereferencing a null pointer triggers UB, the compiler can assume that after
line 4, the pointer tun is non-null. Consequently, the compiler optimizes away the if statement,
creating a security vulnerability.

1 unsigned tun_chr_poll(struct file *file) {

2 struct tun_file *tfile = file->private_data;

3 struct tun_struct *tun = __tun_get(tfile);

4 struct sock *sk = tun->sk; // dereferences tun; implies tun != NULL
5 if (!tun) // always false

6 return POLLERR;

7

8

3

In response to such issues, some compilers introduced flags to disable the removal of null-pointer
checks, even when the compiler can infer that the check is unnecessary. While this flag could have
prevented the vulnerability in the example above, such mechanisms are not a panacea. If a program
triggers UB, the resulting behavior remains unpredictable, and the effect of such flags may not
align with the developer’s expectations.

More recently, a study by Xu et al. [60] found over 4,000 bugs related with UB in open-source
software. This and other studies have led to the development of several flags in the compilers to
disable or detect certain classes of UB. For example, there is a proposal to initialize local (stack)
variables in C++ [5]. Reports on the performance impact range from a 4% slowdown in the Linux
kernel [42] to a 13% slowdown in a benchmark suite [62].

Despite the growing interest in mitigating UB in both programming languages and compilers,
there has been no comprehensive study on the impact of UB in full-scale applications using modern

Historically, developers learned to declare loop induction variables as int. Unfortunately, that results in a mismatch
between the size of pointers and common array indexing types. C++ tries to avoid this situation with iterators.
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hardware. Given that modern CPUs execute instructions out of order and have wide pipelines, the
overhead of executing a few additional assembly instructions is often negligible.

In this paper, we present an exhaustive analysis of the various classes of UB exploited by the
LLVM compiler, which is known for its extensive use of UB for optimization. We modified LLVM
to selectively disable exploitation of each UB class, allowing us to measure the impact of each class
on performance and code size across a variety of real-world applications.

In summary, the contributions of this paper are as follows:

(1) A comprehensive study of the classes of UB exploited for optimization by LLVM, which is
widely recognized for its extensive use of UB.

(2) An extension to the Alive2 translation validation tool [34] to detect optimizations that rely
on UB. This ensures we have thorough coverage of all UB classes exploited by LLVM.

(3) A detailed analysis of the run-time performance and code size impact associated with
exploiting each class of UB for optimization.

2 Undefined Behavior

The C and C++ standards leave many aspects of program behavior undefined. However, most of
these cases are benign in practice, as compilers typically provide reasonable, consistent behavior
that developers can rely on. In some situations, compilers go beyond the standard’s requirements
by offering multiple levels of undefined behavior (UB) with stronger guarantees.

We focus on how UB is handled by LLVM, since it is particularly well-specified and because
LLVM is widely known for leveraging UB for optimization. LLVM has two main classes of UB:

e Deferred UB, which is used to define corner cases for which LLVM does not wish to specify
a concrete value, while allowing the operation to be executed anywhere. For example, a
signed addition can be executed speculatively, even though the result in cases of overflow
is not concretely defined.

e Immediate UB, which is reserved for operations that trigger hardware exceptions and thus
cannot be executed speculatively, e.g., division by zero and dereferencing a null pointer.

The rationale for having these two classes of UB is to enable optimizations that would not
be possible if all UB was immediate. For example, deferred UB allows LLVM to hoist arithmetic
operations out of loops easily. Furthermore, LLVM has two values for representing deferred UB:
undef and poison, with the former being weaker than the latter. Passing these values to certain
operations triggers immediate UB.

The way that Clang (LLVM’s C/C++ frontend) maps input programs into LLVM’s intermediate
representation (IR) is a refinement of the semantics given in the C and C++ standards. Clang
offers stronger guarantees and leaves fewer behaviors as undefined. There are three reasons for
this: (1) cases that offer no potential for optimization, (2) cases where LLVM tries to offer “nicer”
semantics (e.g., not forcing the input pointers to memcpy to be non-null even if the size argument is
zero), and (3) exploiting some UB leads to many programs misbehaving due to a common coding
pattern triggering UB frequently in practice (e.g., forcing a value range for enums is opt-in via
-fstrict-enums). The difference between the last two cases is that for the last case the compiler
offers a set of flags to exploit more UB.

In this study, we wanted to understand the impact of each class of UB that LLVM exploits in
practice for optimization. In order to do this, we modified LLVM to allow us to disable each class of
UB individually. Note that we do not attempt to detect UB either statically or at run time; we merely
want to disable the exploitation of UB. This contrasts with countermeasures, such as initializing all
stack values to zero, which have a higher cost.
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Table 1. Flags that disable UB exploitation in Clang/LLVM. The ‘New?’ column indicates the flags that we
implemented. The last column indicates whether the LLVM IR is expressive enough to implement the flag.

Category Flags Acronym New? Frontend?
Arithmetic -fcheck-div-rem-overflow AO1 v v
Operations -fconstrain-shift-value AO2 v v
-fwrapv AO3 v
Type Ranges -fno-constrain-bool-value TR1 v v
-fno-strict-enums TR2 v
Function -fignore-pure-const-attrs FD1 v v
Domains -fdrop-ub-builtins FD2 v V4
-fno-finite-loops FD3 v
Pointers and -fdrop-align-attr PM1 v v
Memory -fdrop-deref-attr PM2 v v
-fno-delete-null-pointer-checks PM3 v
-fdrop-noalias-restrict-attr PM4 v v
-fno-strict-aliasing PM5 v
-fno-use-default-alignment PMeé6 v v
-Xclang -no-enable-noundef-analysis ~PM7 v
-mllvm -zero-uninit-loads PM38 v
Alias Analysis  -fdrop-inbounds-from-gep AA1 v

-mllvm -disable-oob-analysis
-mllvm -disable-object-based-analysis AA2

AN

2.1 Disabling Exploitation of Undefined Behavior

Table 1 lists the five categories of UB that Clang/LLVM currently exploit for optimization. We further
subdivide each category, for a total of 18 individual aspects that are exploited. We implemented 12
new flags in Clang/LLVM and use 6 existing ones to selectively disable UB.

We attempted to implement as many flags on the frontend side (Clang) as possible by changing
the generated IR to be free from UB. The main reasons why we chose this approach are as follows:

(1) Itis easier to ensure the implementation does not miss some case.

(2) LLVM is used by many languages. Any change to the IR or the optimizers can negatively
impact the performance of these other languages.

(3) It allows us to benchmark the optimizer that is common across multiple languages and thus
some of the results we obtain for C/C++ may transfer to other languages.

Unfortunately, LLVM’s IR is not sufficiently expressive to implement all flags. We had to imple-
ment 3 flags directly in LLVM by changing the code of multiple static analyses and optimizations. We
now describe the changes implemented by each flag. In the appendix, we show example programs
affected by each flag, as well as the IR differences.

2.1.1  Arithmetic Operations. Flag AO1 instruments the IR to trap (a well-defined exit) in the cases
where division and remainder would trigger UB (i.e., the divisor is zero, or the operation overflows).

Flag AO2 ensures that shift operations are well-defined by masking the shift amount so it is
always smaller than the bitwidth. This matches the semantics of x86.
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Flag AO3 makes signed overflow in arithmetic operations defined in term of two’s complement
arithmetic. In practice, this amounts to not adding the nsw attribute to arithmetic operations.

2.1.2  Type Ranges. Flag TR1 prevents the compiler from assuming that bool variables only have
the integer value 0 or 1. This amounts to not emitting LLVM’s !range metadata. Flag TR2 is similar,
but for enum-typed variables.

2.1.3  Function Domains. Flag FD1 ignores the __attribute__((const/pure)) annotations in the input
programs. While these are not part of the C/C++ standards, many compilers support them.

Flag FD2 converts calls to __builtin_unreachable() into well-defined traps, and ignores calls to
assume builtins. Again, these functions are not part of the C/C++ standards.

Flag FD3 prevents the compiler from assuming that all loops without side-effects terminate. This
amounts to removing LLVM’s mustprogress attribute from functions.

2.1.4  Pointers and Memory. Flags PM1 and PM2 prevent Clang from emitting, respectively, align
and dereferenceable function argument attributes. For example, these are added to the “this” argu-
ment of C++ methods, so the optimizer can assume that the whole object is dereferenceable.

Flag PM3 prevents the compiler from assuming that null pointers are not dereferenceable.
In particular, it prevents certain null pointer checks from being optimized away. The attribute
null_pointer_is_valid is added to functions, the dereferenceable argument attributes are changed to
dereferenceable_or_null, and the nonnull argument attribute is not emitted.

Flag PM4 makes Clang ignore the restrict keyword on pointers, i.e., it makes Clang no longer
emit LLVM’s noalias function argument attribute.

Flag PM5 prevents the compiler from using type-based alias analysis by having Clang skipping
the emission of TBAA metadata.

Flag PM6 prevents the compiler from making assumptions about the alignment of data, i.e., all
memory operations are emitted with alignment of 1 (i.e., they are possibly completely unaligned).

Flag PM7 prevents the compiler from assuming that function arguments and return values are
well-defined values (i.e., they are not undef nor poison). In practice, this makes Clang skip emitting
the noundef attribute.

Flag PM8 changes the value of uninitialized loads from undef to zero. Note that this is not the same
as initializing all variables to zero! Instead, LLVM’s optimizer is changed so that when it replaces
such a load, it replaces it with zero instead of undef. This is to prevent subsequent optimizations
that would take advantage of undef to prove that the code triggers UB, at a much smaller cost
than explicitly initializing all variables. While this flag disables exploitation of UB, the semantics
offered is mostly unchanged: loading uninitialized data yields a non-deterministic value, but it
never triggers immediate UB.

2.1.5 Alias Analysis. These flags change the behavior of the alias analysis (AA) algorithms.

Flag AA1 prevents the compiler from assuming that the result of pointer arithmetic operations
are always within bounds of the input object, as well as prevents AA from concluding no-alias
for out-of-bounds accesses. This flag consists of two modifications: change Clang to emit LLVM’s
pointer arithmetic operations (getelementptr) without the inbounds attribute, and change the AA
algorithm itself.

Flag AA2 prevents AA from using object provenance information for inference (e.g., p + i and
q + j cannot alias if p and q are initialized with distinct calls to malloc).

Together, these flags offer a flat memory model.
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2.2 Validating Coverage with Alive2

Finding all places in LLVM/Clang that exploit UB is not an easy task. It is very easy to miss some
cases since these are not documented and sometimes the UB exploitation reasoning is not obvious.

To help us ensure that our UB-disabling flags cover most of the UB exploitation in LLVM/Clang,
we extended Alive2 [34] with a new mode to detect what we call “guardable UB”. Alive2 is a
translation validation tool that integrates with LLVM and verifies whether the optimizations done
when compiling a program were correct.

Our extension to Alive2 detects IR that contains UB that could have been removed by a frontend,
i.e., cases where the IR is expressive enough to allow certain UB to be switched into well-defined
code. For example, division by zero is UB, but we can guard the operation liked == 0 ? 0 : x / dto
make it well-defined. Hence, we call this class of UB “guardable”.

Not all UB in LLVM IR is guardable. For example, memory operations trigger UB when derefer-
encing out-of-bounds pointers. While it is technically possible to guard these operation using, e.g.,
fat pointers, it would be very expensive to do so. Hence, we declare these as “non-guardable UB”.

Armed with this new Alive2 extension, we compiled our benchmarks to check the completeness
of our flags regarding “guardable UB”. It proved to be very useful as we found several problems:

e Found several cases of UB exploitation not disabled by our flags, including missing handling
of __builtin_assume, __builtin_unreachable, assume_aligned, and the align and
dereferenceable parameter attributes. Although we did an exhaustive search for UB in
the LLVM IR’s manual and in the LLVM/Clang source code, we had still missed these cases.

e Found several bugs in the benchmarks: draco uses __attribute__((pure)) on non-pure func-
tions. Also, mnoise uses =(intx)0 = 0; to generate traps, but that is just UB.

e Found two bugs in LLVM: one in the loop vectorizer, in which it would create store operations
that did not respect the original program’s alignment constraints,” and another where Clang
was emitting some RTTI data with the wrong size.®

We believe that developing this extension for Alive2 was very valuable to improve coverage of
our work. We developed it in parallel with the flags to disable UB exploitation, so we could build
confidence in both artifacts. This extension has been incorporated in Alive2 already.

3 Benchmarks

We collected a benchmark suite with 24 C/C++ programs along with their performance tests. These
programs cover a wide range of domains, code size, and performance characteristics (e.g., CPU vs
memory bound). Table 2 shows the list of programs, the corresponding number of lines of code, as
well as the measurement scale for the benchmarks.

In total, we compiled 7.3 million lines of code (LoC), with LLVM being the largest program with
over 2M LoC. Also, since many programs have more than one performance test, overall we run 129
performance tests.

All the benchmarks we used were from the Phoronix Test Suite,* with the exception of Z3 for
which we created new performance tests using files from the SMT library.> We contributed back
the Z3 benchmark to the Phoronix suite. We did not change the source code or the build systems of
any program.

Zhttps://github.com/llvm/llvm-project/issues/65212
Shttps://github.com/llvm/llvm-project/pull/65596
4https://github.com/phoronix-test-suite/phoronix-test-suite/
Shttps://smt-lib.org/benchmarks.shtml
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Table 2. Benchmarks used in our experiments. The version number refers to the Phoronix benchmark version.

No  Benchmark Category Measurement Scale ~ kLoC
1 aom-av1-3.7.0 Video Encoding frames/second 508
2 encode-flac-1.8.1 Audio Encoding seconds 59
3 espeak-1.7.0 Speech Synthesizer seconds 44
4 botan-1.6.0 Security MB/second 148
5 john-the-ripper-1.8.0 Security checks/second 315
6 openssl-3.1.0 Security bytes/s 472
7 aircrack-ng-1.3.0 Security seconds 496
8 build-llvm-1.5.0 Compiler seconds 2,139
9 luajit-1.1.0 Compiler Mflops 69
10 compress-pbzip2-1.6.0 ~ Compression seconds 6
11 compress-zstd-1.6.0 Compression MB/second 85
12 draco-1.6.0 Texture Processing seconds 50
13 graphics-magick-2.1.0  Image Processing iterations/second 263
14 jpegxl-1.5.0 Image Processing megapixels/second 106
15 fftw-1.2.0 HPC Mflops 255
16  primesieve-1.9.0 HPC seconds 9
17 mafft-1.6.2 HPC seconds 496
18 simdjson-2.0.1 Parallel Processing MB/s 74
19  tjbench-1.2.0 Parallel Processing megapixels/second 57
20  rnnoise-1.0.2 Audio Processing seconds 14
21 ngspice-1.0.0 Circuit Simulator seconds 514
22 quantlib-1.2.0 Quantitative Finance = Mflops 395
23 23-1.0.0 SMT Solver seconds 496
24 sqlite-speedtest-1.0.1 Database seconds 249

Most benchmarks in our suite measure the performance by the time spent in running the
underlying application. Eleven benchmarks use time as the measurement scale. Next, Mflops, MB/s
and megapixels/second are the second most popular categories with 4 benchmarks per category.

4 Setup

We used LLVM 16 (released on 17/March/2023) as the baseline and for implementing the new flags.

Our code is available on a fork of LLVM’s repository.®
We used three servers for the experiments:

o 2x Intel Xeon CPU E5-2680 v2 @ 2.80GHz (IvyBridge), 64GB DDR3 RAM (@ 1600 MHz),

running Debian 11
e 2x ARM64 Neoverse-N1 @ 3.00GHz (Ampere Altra) server, 1024GB DDR4 RAM (@ 3200

MHz), running Ubuntu 22.04

e 2x AMD EPYC 9J14 @ 4.00GHz (Zen) server, 2304GB DDR5 RAM (@ 4800 MHz), running
Ubuntu 22.04

We used various techniques to reduce the noise generated by the operating system, other appli-
cations running on the system, and hardware interactions. We devised a benchmark environment
where the relative standard deviation between the results of the same benchmark is at most 3%.

Shttps://github.com/lucic71/llvm-project/tree/release/16.x


https://github.com/lucic71/llvm-project/tree/release/16.x

161:8 Lucian Popescu and Nuno P. Lopes

Furthermore, we ignore results in the interval [-2%, +2%] since real-world applications exhibit
noise that must be ignored.
In summary, we applied the following techniques to reduce the environment noise:

e Disable unnecessary system services;

e Run benchmarks in single-threaded mode;

e Use the taskset and nice Linux utilities to reduce CPU and scheduler noise by pinning
programs to a single CPU core and assigning maximum scheduler priority;

e Disable address space layout randomization (ASLR);

o Setthe CPU to 80% of the total frequency to reduce thermal throttling and dynamic frequency
scaling;

e Disable Turbo Boost, Hyper Threading, and similar technologies to reduce CPU noise;

e Use statistical methods provided by the Phoronix Test Suite (PTS) to keep the relative
standard deviation between results under a threshold of 3%.

All benchmarks were ran in a freshly installed environment to avoid noise from unessential
services and applications. Also, we modified PTS to run benchmarks in single-threaded mode since
by default PTS runs benchmarks in multi-threaded mode.’

Clang enables exploitation of all UB in LLVM with one exception: by default, Clang does not
enforce strict ranges for enum types. The reason is historical: many programs do bit-wise operations
between values of enum types and often the result is not a value of the enum. This led to several
miscompilations in practice, and thus enforcing enum ranges is currently opt-in through the flag
-fstring-enums. Since our goal was to measure the impact of exploiting UB, we enable this flag
for the baseline result, and measure the impact of disabling it through the flag TR2.

5 Results

In this section, we give an overview of the impact of exploiting UB in terms of performance and
code size. We analyze selected cases in the next section.

5.1 Performance

Fig. 1 shows the overall performance impact of each flag across all benchmarks and CPU architec-
tures. We include results for compilation with and without link-time optimizations (LTO).

Unsurprisingly, the performance impact (average and ranges) on AMD and Intel CPUs is much
smaller than on ARM. These are wide out-of-order CPUs that can easily execute for free the few
extra instructions due to fewer optimizations. We also note that disabling more UB has a cumulative
effect, as can be seen in the ‘all’ column, which has the worst result in all cases.

More surprising are the results for LTO, where for ARM we get performance improvements on
average, in some cases over 10%, while without LTO we get performance losses on average. Even
for AMD and Intel, the overall performance ranges are a bit wider.

Fig. 2 shows the number of benchmarks that improve performance (> 2%), and with moderate
(= 2% and < 5%) and severe (> 5%) performance losses, for each flag and compilation mode. It is
clear that LTO is very effective in recovering the losses observed with non-LTO builds, reducing
both the total number of slowdowns and the number of severe performance losses. Again, we see
that ARM benefits immensely from LTO, and that disabling exploitation of UB often improves the
performance. The cumulative effect of disabling UB can also be observed in this figure, with the
‘all’ column having the most benchmarks that exhibit slowdowns.

7Qur fork of PTS is available on GitHub: https://github.com/lucic71/test-profiles/tree/ub, https://github.com/lucic71/
phoronix-test-suite.
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Fig. 3 shows the performance results per program and flag category. We indicate the number of
benchmark tests that exhibit performance variations greater than 2% (note that many programs
have more than one test).
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Fig. 3. Number of benchmark tests that degrade (left half of each plot) and improve (right half) the perfor-
mance per program and per flag category. Results in the range (-2, 2) are omitted, as they are considered
noise.
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Fig. 4. Binary size impact (%) for each flag across all benchmarks for all CPU architectures (ARM, Intel, AMD)
and compilation modes (non-LTO and LTO). The lines indicate the average impact, and the solid boxes the
min/max values. Lower values are better (meaning the code size decreased by disabling some UB).

Some programs degrade in all compilation modes and CPU architectures. A notable one is
aom-av1, where the AO flag group regresses the performance in all platforms, except on ARM LTO.
For the fftw program, the PM flag group has the strange effect of improving half of the tests and
degrading the other half.

Another interesting case is simdjson, where AMD is the only architecture with a large number
of slowdowns. All flags cause slowdowns in at least one test of this program, but the cumulative
effect is not observed: there are few slowdowns when all flags are enabled (no UB exploitation
allowed).

5.2 Binary Size

Fig. 4 shows the overall impact on the binary size of each flag across all benchmarks and CPU
architectures. The average impact is within our 2% target, with ARM being an exception with three
flags showing larger changes: AO3 (LTO), and FD2 ad PM1 (non-LTO). We note that the code size
changes are often caused by differences in function inlining (due to an extra instruction causing
the inlining heuristic crossing a threshold), and less because of the extra instructions due to fewer
optimizations.

Fig. 5 shows a breakdown of the results per program and flag category. The impact on binary
size is significantly smaller than on performance, with some programs not having any impact. The
impact on x86 platforms is also smaller since the instruction set is larger and thus there are more
opportunities for the compiler to be able to pack extra IR instructions into one assembly instruction,
unlike ARM. Also, although AMD and Intel are both x86 architectures, we used different Linux
distributions, explaining the different results.
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Exploiting Undefined Behavior in C/C++ Programs for Optimization: A Study on the Performance Impact 161:13

5.3 Threats to Validity

Although we took extra care to ensure the validity of the results here presented, there are several
threats to our study, namely:

(1) Choice of benchmarks: compilers are tuned for certain benchmarks, and therefore the
results obtained for one program do not necessarily carry over to another. We tried to select
a large benchmark suite with programs of a wide range of domains. Nevertheless, our set
of benchmarks does not cover all application domains.

(2) Missed some UB: although we did an extensive search for UB in the LLVM IR’s man-
ual and through the source code and consulted with some LLVM developers, it is likely
that we missed some case since exploitation of UB is often subtle and hidden in complex
preconditions. Therefore, the results shown for all UB disabled may be incorrect.

(3) Bugs in the implementation of the flags: for the flags implemented in the frontend (the
majority) this is unlikely as the implementation is simple and easy to test, but the flags
implemented in the LLVM optimizer are much more complex and thus the probability of
having a bug there is non-zero, albeit small.

(4) Bugs in LLVM: we changed Clang to produce IR with some of the UB replaced with
well-defined constructs, but then we rely on LLVM being correct to respect the semantics
of the produced IR. As mentioned in Section 2.2, we found one bug in LLVM where it failed
to respect one of our IR changes. We may have missed other similar bugs in LLVM that
could impact the results.

(5) Limitations of Alive2: Although we used Alive2 to detect missing UB flags and implemen-
tation bugs, Alive2 has key limitations that prevents it from giving us full confidence. In par-
ticular, Alive2 can only detect uses of “guardable UB” (will miss bugs around “non-guardable
UB”), only supports intra-procedural optimizations (will miss bugs and UB exploitation
done in inter-procedural optimizations), performs only bounded verification (potentially
missing bugs involving complex loop optimizations), and it can timeout for large functions.

(6) Bugs in Alive2: Our implementation of “guardable UB” may miss some cases, as it is
difficult to test Alive2 for false negatives.

(7) Bugs in the benchmarks: We caught several bugs in the benchmark programs, with
one causing a significant performance drop with one of the flags (more details in the next
section). We may have missed other bugs that impact the results.

6 Performance impact analysis

In this section, we analyze selected benchmarks that exhibit large performance variations when
compiled with one or more UB-disabling flags. Moreover, we categorize benchmarks with respect
to recoverability of the performance regressions according to three categories:

e Recoverable using link-time optimizations (LTO)
e Recoverable with small to moderate changes to the compiler
e Theoretically impossible to fix or requires a very complex algorithm

Table 3 summarizes the results. Out of the presented 12 cases, only 2 have performance drops
that are not recoverable using standard compiler optimization algorithms. The remaining cases
are either trivially recoverable by compiling the program with LTO or by doing small changes to
LLVM.

There are five main root causes for the performance variations: lack of precision of the pointer/alias
analysis (which is a known deficiency of LLVM), limitations in the heuristic for alignment of loops,
limitations in the loop vectorizer algorithm in handling some loops with unknown trip counts
(partially fixed already in LLVM 19), limitations in the register allocator’s heuristics, and the inlining
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Table 3. Recoverability and root causes for selected performance variations in benchmarks.

Recoverability Root Cause Flag Benchmark Impact
Recoverable with LTO Pointer analysis PM1 simdjson -13%
Pointer analysis PM2 simdjson -13%
Recoverable with Logp Vectorl.zer AA1 jpegxl -4%
derat K Alias analysis AA2  espeak -4.2%
moderate wor Inliner AO2  zstd -2.1%
Pointer analysis PM3 pbzip2 -3.2%
Loop misalignment PM4  jpegxl -2.2%
Unrecoverable Pointer analysis FD2 simdjson -4%
Pointer analysis PM6 sqlite -3%

Bug in the program Use of uninitialized data PMS8 john-the-ripper -1%

Improvement Loop misalignment AO1 jpegxl +7%
Register allocator PM5 fftw +3%

heuristic not understanding a free pattern. Next, we explore each category of performance changes
and give a detailed root cause analysis and methods to recover the lost performance whenever
possible.

6.1 Recoverable with Link-Time Optimizations (LTO)

Both -fdrop-align-attr (PM1) and -fdrop-deref-attr (PM2) degrade the performance of the
simdjson benchmark by 13%. These flags disable the emission of, respectively, alignment and
dereferenciability information for the “this” pointer of C++ methods. By default, Clang emits IR
that assumes that methods are called on objects that are fully dereferenceable. This allows, for
example, the compiler to execute loads from the object speculatively.

For this benchmark, dropping either piece of information prevents the loop invariant code motion
(LICM) optimization from hoisting a load out of the loop. A simplified version of the code is shown
in Fig. 6. The blue line indicates the load instruction that is hoisted when not using either of the
flags.

To move the load instruction out of the loop, the compiler needs to prove one of the following
conditions: either the loop is guaranteed to execute at least once, or the load cannot trigger UB in
any circumstance and yields the same result in all iterations. If the loop executes at least once, then
executing the load earlier would be sound even if it triggers UB since UB in LLVM has “time-travel”
semantics. Since the loop guard is a function argument, the compiler cannot prove whether the
loop executes or not (using intra-procedural reasoning).

For a load instruction to be well-defined, the following conditions must hold: (1) the input pointer
must point to an object in memory that is live and larger than the access size, and (2) the input
pointer must be at least as aligned as the alignment argument.

In the code above, both conditions are met: the dereferenceable(48) attribute on the %this pointer
guarantees condition (1) since the load does an 8-byte access (loads a pointer from memory) which
is less than the 48 bytes pointed to by %this. The align 8 attribute guarantees condition (2) since
the load requires the pointer to be at least 8-byte aligned and the attribute guarantees that.

Now it is obvious that removing either of the parameter attributes blocks LICM from hoisting the
load. However, it is possible to recover this optimization in two ways. First, some CPU architectures
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define i1 @run(ptr align 8 dereferenceable(48) %this, i1 %cond) {
entry:
br label %while.cond

while.cond:
5;.11 %cond, ..., label %while.body
while.body:
%é load ptr, ptr %this, align 8
%1 = load i32, ptr %0, align 4

%cmp2 = icmp eq i32 %1, 0
br i1 %cmp2, ..., label %while.cond

Fig. 6. Simplified code of a function of simdjson. The blue arrow indicates the load that is hoisted when not
using the PM1 or PM2 flags.

(notably x86) can execute unaligned memory operations. Therefore, in order to work around the
loss of alignment information on the %this pointer, we could change LICM to still hoist the load for
CPU architectures that support unaligned loads, but dropping the alignment requirements of the
load instruction (i.e., use ‘align 1° on the load).

A simpler alternative is to compile the program with LTO. We confirmed that LLVM’s inter-
procedural analyses can propagate both alignment and dereferenceability information for this
function, which allows the LTO build to recover the performance loss.

6.2 Recoverable with Moderate Changes to LLVM

We now discuss benchmarks whose performance regressions could be recovered with easy to
moderate changes to LLVM.

6.2.1 -fdrop-inbounds-from-gep -mllvm -disable-oob-analysis (AAT). These flags cause a 4% degra-
dation on jpegx1 because the missing assumption that pointer arithmetic cannot overflow prevents
the vectorization of a hot loop in the function jx1::FindTextLikePatches.

The missing inbounds attribute affects vectorization of loops where the induction variable is a
pointer, e.g.:

preheader:

br label %loop

loop:
%ptr = phi ptr [%ptr2, %loopl, [%init, %preheader]

%ptr2 = getelementptr inbeunds i8, ptr %ptr, i64 %inc
%C = icmp ne ptr %ptr2, %end
br i1 %c, label %loop, label %exit

exit:
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When both %init and %end are a mulitple of the increment (%inc), the loop is guaranteed to
terminate. We get the sequence of %ptr = %init, %init + %inc, %init + 2 X %inc, . . ., %end. Otherwise,
it may happen that the sequence wraps around and continues forever.

For disequalities (i.e., icmp ne), the inbounds attribute guarantees that the loop is terminating
because since objects cannot wrap around the address space and since the result of the pointer
arithmetic operation must be in-bounds of some object, the induction variable must reach %end,
otherwise it triggers UB.

Loop vectorization algorithms generate vectorized loops that iterate, e.g., a quarter of the itera-
tions that the original loops did. Therefore, computing the loop trip count (even if in a symbolic
form) is crucial for these algorithms. As we have seen, in some cases we cannot statically decide if a
loop terminates without the help of UB reasoning. An alternative is to push some of the reasoning to
run time. In fact, LLVM 19 can already vectorize some loops similar to the one above by generating
extra code to check that the start/end pointers are multiples of the increment.

6.2.2 -disable-object-based-analysis (AA2). This flag causes a 4.2% degradation on espeak because
the precision loss in the alias analysis prevents vectorization of a hot loop.

Concretely, in order to vectorize the loop below, the compiler needs to prove that the array
accesses on the right side of the assignment do not alias with the array access on the left. This is
because the goal is to perform multiple loop iterations at once and if there is the possibility that,
say, harm_inc[0] and htab[1] point to the same location, we could not read htable..3] at once and do
four iterations of the loop in parallel because of the inter-iteration dependency.
static int harm_inc[N_LOWHARMI;

static int hspect[2][MAX_HARMONIC];
static int *harmspect;

int PeaksToHarmspect(wavegen_peaks_t *peaks, int pitch, int xhtab, int control) {
for (h = 1; h < N_LOWHARM; h++)
harm_inc[h] = (htab[h] - harmspect[h]) >> 3;
}

int Wavegen(...) {

harmspect = hspect[0];

maxh2 = PeaksToHarmspect(peaks, wdata.pitch<<4, hspect[0], 0);
}

We first note that PeaksToHarmspect gets inlined in the Wavegen function, and thus it becomes
obvious that htab and harmspect point to a global variable. Without the flag, LLVM proves that htab
and harm_inc do not alias using object-based reasoning: since pointer arithmetic cannot overflow
(the program would trigger UB otherwise), it determines that ‘harm_inc + h’ and ‘hspect[0] + h’
cannot alias as these pointers are based on different objects.

To prove non-aliasing without resorting to UB, the alias analysis would need to take into
consideration the loop bounds to prove that the accesses do not overflow the arrays. We tried
LLVM’s SCEV AA algorithm since it implements such kind of reasoning, but unfortunately it was
not able to prove no-aliasing. We believe that extending SCEV AA to support the case above can be
done with moderate amount of work.

6.2.3 -fconstrain-shift-value (AO2). This flag caused a 2.1% degradation on zstd because the extra
‘and’ instruction added before each shift prevents one function (zSTd_get0ffsetInfo) from being
inlined. However, this extra instruction is free on x86 because the shift assembly instruction
implements this mask+shift semantics, so there is no change in the assembly emitted. The fix is
simple: LLVM’s inlining heuristic should learn about this pattern to not count the ‘and’ instruction.
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6.2.4 -fno-delete-null-pointer-checks (PM3). This flag causes a 3.2% degradation on pbzip2 because
the SimplifyCFG optimization fails to merge two basic blocks. In the StreamScanner: :getNextStream
function, there is the following check (where all variables are object fields):

if (_InBuffCurrent == _InBuffEnd && _eof)

return ...;

C++ evaluates the &3 operator using short-circuiting, i.e., it only evaluates _eof if the comparison
evaluates to true. This creates two basic blocks, but LLVM without the flag merges them by
speculatively evaluating both sides of the & operator.

To merge the two basic blocks without breaking the short-circuiting semantics, the compiler
must prove that it is safe to execute the right-hand side (RHS) speculatively, i.e., the RHS cannot
trigger UB nor have side-effects.

The PM3 flag changes the attribute of the “this” pointer parameter from dereferenceable(204) to
dereferenceable_or_null(204). On the surface, this means that the compiler can no longer prove that
accessing the _eof field is safe since the “this” pointer may be null. However, since we had already
accessed the other two fields, accessing _eof is safe. The culprit is that LLVM’s pointer analysis
needs to learn about this pattern, which amounts to modest amount of implementation work.

6.2.5 -fdrop-noalias-restrict-attr (PM4). This flag causes a 2.2% degradation on jpegx1 due to a loop
becoming misaligned. With the flag, the size of function jx1::N_SSE4: :L2DiffAsymmetric increases by
16 bytes due to loss of precision in the alias analysis. Although this function is not called by the
benchmark, this size increase has a ripple effect and changes the alignment of a loop in another
function placed below in the binary.

This performance degradation is recoverable with a better loop alignment heuristic.

6.3 Unrecoverable

6.3.1 -fdrop-ub-builtins (FD2). This flag causes a 4% degradation on simdjson. When this flag is

enabled, calls to unreachable builtins (UB) are converted into traps (well-defined exits). Unreachable

builtins are used only for optimization and do not generate assembly instructions, while traps do.
The program uses unreachable builtins as follows:

#define SIMDJSON_ASSUME(COND) do { if (!(COND)) __builtin_unreachable(); } while (@)

LLVM recognizes this pattern and transforms it into a call to el1vm.assume, which is used only
by optimizations; the code for the condition is not emitted. However, when the unreachable is
converted into a trap, LLVM translates the code into an if statement, which gets emitted into
assembly and checked at run time.

Out of the 30 uses of the macro, 13 traps are deleted as LLVM can statically prove that the
condition holds. The remaining 17 cases are evaluated at run time and we argue that no standard
compiler algorithm could remove those. Many of these cases originate in the following function:
bool value_iterator::find_field_unordered_raw(const std::string_view key) {

// validate input string

while (has_value) {
if ((error = field_value() )) { abandon(); return error; }

}

// consume the string
while (true) {
error = field_value(); SIMDJSON_ASSUME(!error);

}
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The function traverses the input string twice: first it checks if the string is well-formed, and then
it consumes the string assuming it is well-formed. Proving that the assumptions of the second loop
hold statically would require proving that the first loop only lets well-formed strings pass through,
which is well beyond the reasoning power of compiler algorithms.

6.3.2 -fno-use-default-alignment (PM6). This flag causes a 3% degradation on sqlite because the
loss of alignment information in atomic operations is very expensive. The sqlite3vdbeExec function
has the following code:

if( AtomicLoad(&db->ul.isInterrupted) ) goto abort_due_to_interrupt;

The size of the isInterrupted field is 4 bytes. If the compiler knows the field is 4-byte aligned (or
more), it can compile the load into a single assembly instruction (on x86). But without knowing the
alignment, the compiler inserts a call to a run-time library function (__atomic_load), since it may
need to acquire a lock. Unaligned atomic operations are thus very expensive.

Inferring the alignment of a pointer is trivial when we have “line-of-sight” to the allocation site
(i.e., we have a simple data-flow path until a malloc, for instance). In the case above, the field is
accessed through multiple pointer indirections, which is beyond the reasoning power of compiler
algorithms.

6.4 Bug in the source code

The flag -zero-uninit-loads (PM8) degrades the performance of john-the-ripper by 1% because
the program accesses uninitialized data. The flag changes that access to load zero instead, incurring
in the cost of materializing the constant in terms of both run time and binary size.

The relevant code is as follows:

void scan_central_index(const char *fname) {
zip_context ctx;

if (this_disk != 0 || cd_start_disk != 0) {
// ctx.archive.zip64 not initialized

} else {
ctx.archive.zip64 = zip64;

3

if (ctx.archive.zip64) {

3
}

On the true branch, the variable is left uninitialized and thus the program triggers UB when that
path is followed. The increase in binary size causes the performance degradation due to a ripple
effect in misaligning a loop. We have fixed the bug in the program and upstreamed the bug fix.?

6.5 Improvements

6.5.1 ~fcheck-div-rem-overflow (AO1). This flag causes a 7% improvement on jpegxl due to a hot
loop becoming better aligned. Enabling this flag increases the binary size because of the extra
checks around division/remainder operations, and that causes a ripple effect of increasing the
alignment of a hot loop.

The following function reproduces the effect of loop alignment on performance. On the left, a
function in C, and on the right the corresponding x86 assembly. Increasing the alignment from 16
to 32 bytes improves the performance of the function significantly on some microarchitectures. It

8https://github.com/openwall/john/pull/5466
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halves the idqg.all_dsb_cycles_any_uops performance counter, which indicates that the CPU
executes fewer cycles.

.align 16
loop:
int loop(int *array, int length, int value) { t_iSt Ar31,/,r51
while (length != 0) { jle en o
--length; lea -0x1(%rsi),%rax
if (array[length] == value) cmp /oed)(,_@xﬁ}(/ordl,/orsl,ﬁl)
mov %rax,%rsi
return 1; "
} jne loop
return 0; mov $0x1, %eax
} ret
end:
mov $0x0, %eax
ret

LLVM aligns small loops with 16 to 31 bytes to a 16-byte boundary. The extra code inserted
by the flag had the effect of changing the alignment of one small loop (18 bytes) to 32 bytes. For
certain microarchitectures, the increased alignment improves the performance of the instruction
decoding mechanism of the CPU. This is because the window of the uops cache becomes aligned
with the loop body.

We reproduced this performance improvement on Intel Sandy Bridge, but not on IvyBridge nor
on Westmere. This issue has been reported in LLVM’s mailing list before.” LLVM’s loop alignment
heuristic could be improved to increase alignment to a 32-byte boundary for the relevant microarchi-
tectures (possibly conditional on profiling data to avoid large binary size increases). Currently, the
solution is to specify one of the two compiler flags by hand: -branches-within-32B-boundaries
or -x86-experimental-pref-innermost-loop-alignment.

6.5.2  -fno-strict-aliasing (PM5). This flag causes a 3% improvement on fftw due to a limitation
in the register allocator’s heuristics. Disabling type-based alias analysis prevents the common
sub-expression elimination (CSE) optimization to remove some redundant instructions. Although
this leads to an IR with 8% more instructions, the smaller liveness intervals for key registers makes
the register allocator produce better code (the final binary is 11% smaller).

In particular, for the q1_8 function, we observe that the number of add/lea instructions increases
from 137 to 169 (+32), but the total number of moves decreases from 1,296 to 1,013 (-283), far
outstripping the small increase in arithmetic operations.

In principle, the register allocator should be able to tradeoff register spills for rematerializations
(repeat arithmetic operations), but since register allocation is an NP-hard problem, it is not surprising
that the register allocator can sometimes fail to produce better code.

LLVM has 3 register allocators: greedy (default for -02), fast (default for -O0), and PBQP [17].
We tried all the three allocators, and could only reproduce the problem with the greedy allocator.

7 Related work

We are not aware of any other systematic study on the performance benefits of exploiting UB for
optimization. We survey related work that contributed to the understanding of UB and that made
this work possible, including what UB exactly means, how it can be detected, etc.

Semantics of intermediate representations (IRs). Lee et al. [27, 28] proposed a new semantics for
LLVM’s IR to allow LLVM to perform key optimizations in the presence of UB. Previously, LLVM
was doing optimizations that were not correct and it had optimizations that were incompatible

“https://lists.llvm.org/pipermail/llvm-dev/2021-January/148177.html
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between each other. Chakraborty and Vafeiadis [8] formalized the semantics of some parts of the
LLVM IR related with concurrency, including cases involving UB. Parts of the LLVM IR semantics,
including some UB aspects of it, have been formalized in Coq [22, 64] and in K [29]. Dahiya and
Bansal [11] formalized parts of the GCC’s IR related with UB. Shen [47] gives a non-exhaustive list
of UB exploited by GCC.

Semantics of C/C++. There have been multiple attempts to formalize the UB in the C [18, 24, 37]
and C++ [61] standards. There are also proposals to remove some UB from C++, including auto-
matically initializing local variables [5], allowing certain infinite loops [6], and memory safety [41],
as well as downgrading certain UB to “erroneous behavior” [25].

Dialects of C/C++. There is a proposal for the creation of C++ profiles to let the users pick the
flavor of safety they want [19]. C/C++ compilers already support multiple flags that change the
language semantics, e.g., ~fwrapv, which changes the semantics of signed integer overflows.

Detection of UB. Several tools have been created to help developers find sources of UB and to
protect applications from potential security vulnerabilities created by UB. Many tools focus on
finding memory safety issues at run time [3, 7, 40, 44, 50, 51], as well as race conditions [45], integer
overflows [12], and violations of the strict aliasing rules [16]. Most tools degrade performance
significantly and thus cannot be used in production. Some tools opt to run the checks at random
only in order to reduce the overhead at the expense of missing bugs [46]. There are also static UB
checkers [32]. Other tools focus on cheaper properties than full memory safety, such as control-flow
integrity (CFI), where indirect calls/jumps are forced to go to a “safe” location [1, 54].

Baev etal. [4] and Dunaev et al. [15] studied the performance impact of several compiler hardening
flags of GCC and Clang, respectively. They report an almost 3x slowdown in some benchmarks
when all flags are enabled.

Compiler testing. Fuzzers are now widely used to find bugs in compilers, and they go to great
lengths to generate programs without UB [26, 52, 63]. One reason being that they usually compare
the output of different compilers and compilers differ in the treatment of UB. Compiler verification
tools have also added support for UB in the past decade [34, 35]. LookUB [21] is a tool to find
optimizations that remove run-time safety checks. UBFUzz [31] finds bugs in run-time safety checks
by generating programs with UB,

Security risks of UB. Taking advantage of UB to perform optimizations can break the security and
correctness properties of applications [14]. Wang et al. [55] provide examples of code in PostgreSQL,
the Linux kernel, and FreeBSD’s libc that are deleted when compiled with a modern compiler.
Later, they developed STACK [57, 58] to detect such vulnerable code automatically. From over
8,000 analyzed Debian packages, 40% of them contained vulnerable code. In addition, Xu et al. [60]
collected and analyzed more than 4,000 bug reports related to UB optimizations, underlining the
increased negative security impact of UB optimizations in the wild. Further studies [23, 30, 36, 48,
56, 59] focused on understanding the security impact of particular optimizations, such as integer
overflow, dead code elimination, or uninitialized reads.

Performance studies. Mytkowicz et al. [39] showed that the execution environment and ripple
effects can sometimes explain performance differences in programs compiled with different flags.
In our study we encountered several cases of ripple effects degrading the performance that were
unrelated with our changes (e.g., adding an instruction to a function made another function slower
due to code alignment).
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Theodoridis and Su [53] showed that compilers are not monotonic with respect to UB: sometimes
adding more UB to a program makes the compiler generate worse code, while in theory that should
never happen. Our study confirms this result as well.

Some studies with HPC software indicate an upper bound of 20% in the performance improve-
ments available if the perfect UB information is added [13, 20]. Other studies have focused on
loop optimizations such as vectorization [2, 49]. Hydra [38], Minotaur [33], and Souper [43] are
superoptimizers that produce optimizations that exploit UB in the LLVM IR.

8 Conclusion

We presented the first comprehensive study on the performance impact of exploiting undefined
behavior (UB) in C and C++ programs. First, we cataloged 18 individual UB aspects exploited by
LLVM, a compiler that is widely known for its extensive use of UB. We then implemented flags
in the compiler that disable exploitation of each UB aspect by strengthening the semantics (e.g.,
define division by zero as a well-defined trap instead of UB).

The results show that, in the cases we evaluated, the performance gains from exploiting UB
are minimal. Furthermore, in the cases where performance regresses, it can often be recovered by
either small to moderate changes to the compiler or by using link-time optimizations.

We note that our study makes no attempt to quantify the potential security benefits or im-
provements in developer productivity from disabling the identified UB classes. Our primary goal
was to first understand the performance impact, leaving further exploration for future work. We
hope this study serves as a starting point for discussions within language committees and related
communities.

Acknowledgments

This work was supported in part by national funds through FCT, Fundacéo para a Ciéncia e a
Tecnologia, under project UIDB/50021/2020 (DOI: 10.54499/UIDB/50021/2020), and a cloud credits
gift from Oracle.

References

[1] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2009. Control-flow integrity principles, implementations,
and applications. ACM Trans. Inf. Syst. Secur. 13, 1, Article 4 (nov 2009). https://doi.org/10.1145/1609956.1609960

[2] Neil Adit and Adrian Sampson. 2022. Performance Left on the Table: An Evaluation of Compiler Autovectorization for
RISC-V. IEEE Micro 42, 5 (2022), 41-48. https://doi.org/10.1109/MM.2022.3184867

[3] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. 2009. Baggy Bounds Checking: An Efficient and
Backwards-Compatible Defense against Out-of-Bounds Errors. In USENIX Security. https://www.usenix.org/legacy/
event/sec09/tech/full_papers/akritidis.pdf

[4] R.V.Baev, L. V. Skvortsov, E. A. Kudryashov, R.A. Buchatskiy, and R. A. Zhuykov. 2021. Prevention of vulnerabilities
arising from optimization of code with Undefined Behavior. ISP RAS 33 (2021). Issue 4. https://doi.org/10.15514/ISPRAS-
2021-33(4)-14

[5] JF Bastien. 2023. C++ Proposal P2723R1: Zero-initialize objects of automatic storage duration. http://wg21.link/P2723

[6] JF Bastien. 2024. C++ Proposal P2809R3: Trivial infinite loops are not Undefined Behavior. http://wg21.1ink/P2809r3

[7] Derek Bruening and Qin Zhao. 2011. Practical memory checking with Dr. Memory. In CGO. https://doi.org/10.1109/
CGO0.2011.5764689

[8] Soham Chakraborty and Viktor Vafeiadis. 2017. Formalizing the concurrency semantics of an LLVM fragment. In
CGO. https://doi.org/10.1109/CGO.2017.7863732

[9] ANSI Technical Committee and ISO/IEC JTC 1 Working Group. 1989. Rationale for International Standard - Program-
ming Language - C. https://www.open-std.org/jtc1/sc22/wgl4/www/docs/n850.pdf

[10] CVE. 2009. CVE-2009-1897: Vulnerability in the linux kernel involving a NULL pointer dereference. https://www.cve.
org/CVERecord?id=CVE-2009-1897
[11] Manjeet Dahiya and Sorav Bansal. 2017. Modeling Undefined Behaviour Semantics for Checking Equivalence Across

Compiler Optimizations. In HVC. https://doi.org/10.1007/978-3-319-70389-3_2


https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1109/MM.2022.3184867
https://www.usenix.org/legacy/event/sec09/tech/full_papers/akritidis.pdf
https://www.usenix.org/legacy/event/sec09/tech/full_papers/akritidis.pdf
https://doi.org/10.15514/ISPRAS-2021-33(4)-14
https://doi.org/10.15514/ISPRAS-2021-33(4)-14
http://wg21.link/P2723
http://wg21.link/P2809r3
https://doi.org/10.1109/CGO.2011.5764689
https://doi.org/10.1109/CGO.2011.5764689
https://doi.org/10.1109/CGO.2017.7863732
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n850.pdf
https://www.cve.org/CVERecord?id=CVE-2009-1897
https://www.cve.org/CVERecord?id=CVE-2009-1897
https://doi.org/10.1007/978-3-319-70389-3_2

161:22 Lucian Popescu and Nuno P. Lopes

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]

[23]
[24]
[25]
[26]

[27]

[28]
[29]
[30]
[31]

[32]

[33]
[34]
[35]
[36]

[37]

Will Dietz, Peng Li, John Regehr, and Vikram Adve. 2015. Understanding Integer Overflow in C/C++. ACM Trans.
Softw. Eng. Methodol. 25, 1, Article 2 (dec 2015). https://doi.org/10.1145/2743019

Johannes Doerfert, Brian Homerding, and Hal Finkel. 2019. Performance exploration through optimistic static program
annotations. In ISC High Performance 2019. https://doi.org/10.1007/978-3-030-20656-7_13

Vijay D’Silva, Mathias Payer, and Dawn Song. 2015. The Correctness-Security Gap in Compiler Optimization. In SPW.
https://doi.org/10.1109/SPW.2015.33

P. D. Dunaev, A. A. Sinkevich, A. M. Granat, I. A. Batraeva, S. V. Mironov, and N. Yu. Shugaley. 2024. Developing a
clang-based safe compiler. ISP RAS 36 (2024). Issue 4. https://doi.org/10.15514/ISPRAS-2024-36(4)-3

Hal Finkel. 2017. The Type Sanitizer: Free Yourself from -fno-strict-aliasing. https://llvm.org/devmtg/2017-10/slides/
Finkel-The%20Type%20Sanitizer.pdf

Lang Hames and Bernhard Scholz. 2006. Nearly optimal register allocation with PBQP. In JMLC. https://doi.org/10.
1007/11860990_21

Chris Hathhorn, Chucky Ellison, and Grigore Rosu. 2015. Defining the undefinedness of C. In PLDIL https://doi.org/
10.1145/2737924.2737979

H. Hinnant, R. Orr, B. Stroustrup, D. Vandevoorde, and M. Wong. 2023. C++ document P2759R1: DG Opinion on Safety
for ISO C++. https://www.open-std.org/JTC1/SC22/WG21/docs/papers/2023/p2759r1.pdf

Jan Hueckelheim and Johannes Doerfert. 2023. ORAQL — Optimistic Responses to Alias Queries in LLVM. In ICPP.
https://doi.org/10.1145/3605573.3605644

Raphael Isemann, Cristiano Giuffrida, Herbert Bos, Erik van der Kouwe, and Klaus von Gleissenthall. 2023. Don’t
Look UB: Exposing Sanitizer-Eliding Compiler Optimizations. Proc. ACM Program. Lang. 7, PLDI, Article 143 (jun
2023). https://doi.org/10.1145/3591257

Jeehoon Kang, Yoonseung Kim, Youngju Song, Juneyoung Lee, Sanghoon Park, Mark Dongyeon Shin, Yonghyun Kim,
Sungkeun Cho, Joonwon Choi, Chung-Kil Hur, and Kwangkeun Yi. 2018. Crellvm: verified credible compilation for
LLVM. In PLDI. https://doi.org/10.1145/3192366.3192377

Andreas D. Kellas, Alan Cao, Peter Goodman, and Junfeng Yang. 2023. Divergent Representations: When Compiler
Optimizations Enable Exploitation. In SPW. https://doi.org/10.1109/SPW59333.2023.00035

Robbert Krebbers and Freek Wiedijk. 2015. A Typed C11 Semantics for Interactive Theorem Proving. In CPP.
https://doi.org/10.1145/2676724.2693571

Thomas Koppe. 2023. Correct and incorrect code, and erroneous behaviour. https://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2023/p2795r0.html

Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs via guided stochastic program mutation.
In OOPSLA. https://doi.org/10.1145/2814270.2814319

Juneyoung Lee, Chung-Kil Hur, Ralf Jung, Zhengyang Liu, John Regehr, and Nuno P. Lopes. 2018. Reconciling
High-Level Optimizations and Low-Level Code in LLVM. Proc. ACM Program. Lang. 2, OOPSLA, Article 125 (oct 2018).
https://doi.org/10.1145/3276495

Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David Majnemer, John Regehr, and Nuno P.
Lopes. 2017. Taming Undefined Behavior in LLVM. In PLDI. https://doi.org/10.1145/3062341.3062343

Liyi Li and Elsa L. Gunter. 2020. K-LLVM: A Relatively Complete Semantics of LLVM IR. In ECOOP. https://doi.org/10.
4230/LIPIcs.ECOOP.2020.7

Shaohua Li and Zhendong Su. 2023. Finding Unstable Code via Compiler-Driven Differential Testing. In ASPLOS.
https://doi.org/10.1145/3582016.3582053

Shaohua Li and Zhendong Su. 2024. UBFuzz: Finding Bugs in Sanitizer Implementations. In ASPLOS. https://doi.org/
10.1145/3617232.3624874

Changming Liu, Yaohui Chen, and Long Lu. 2021. KUBO: Precise and Scalable Detection of User-triggerable Undefined
Behavior Bugs in OS Kernel. In NDSS. https://www.ndss-symposium.org/wp-content/uploads/ndss2021_1B-5_24461_
paper.pdf

Zhengyang Liu, Stefan Mada, and John Regehr. 2024. Minotaur: A SIMD-Oriented Synthesizing Superoptimizer. Proc.
ACM Program. Lang. 8, OOPSLAZ2, Article 326 (Oct. 2024). https://doi.org/10.1145/3689766

Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. 2021. Alive2: Bounded Translation
Validation for LLVM. In PLDI. https://doi.org/10.1145/3453483.3454030

Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. 2015. Provably Correct Peephole Optimizations
with Alive. In PLDI. https://doi.org/10.1145/2737924.2737965

Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee. 2016. UniSan: Proactive Kernel Memory Initialization to
Eliminate Data Leakages. In CCS. https://doi.org/10.1145/2976749.2978366

Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David Chisnall, Robert N. M. Watson, and
Peter Sewell. 2016. Into the depths of C: elaborating the de facto standards. In PLDI. https://doi.org/10.1145/2908080.
2908081


https://doi.org/10.1145/2743019
https://doi.org/10.1007/978-3-030-20656-7_13
https://doi.org/10.1109/SPW.2015.33
https://doi.org/10.15514/ISPRAS-2024-36(4)-3
https://llvm.org/devmtg/2017-10/slides/Finkel-The%20Type%20Sanitizer.pdf
https://llvm.org/devmtg/2017-10/slides/Finkel-The%20Type%20Sanitizer.pdf
https://doi.org/10.1007/11860990_21
https://doi.org/10.1007/11860990_21
https://doi.org/10.1145/2737924.2737979
https://doi.org/10.1145/2737924.2737979
https://www.open-std.org/JTC1/SC22/WG21/docs/papers/2023/p2759r1.pdf
https://doi.org/10.1145/3605573.3605644
https://doi.org/10.1145/3591257
https://doi.org/10.1145/3192366.3192377
https://doi.org/10.1109/SPW59333.2023.00035
https://doi.org/10.1145/2676724.2693571
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2795r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2795r0.html
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1145/3276495
https://doi.org/10.1145/3062341.3062343
https://doi.org/10.4230/LIPIcs.ECOOP.2020.7
https://doi.org/10.4230/LIPIcs.ECOOP.2020.7
https://doi.org/10.1145/3582016.3582053
https://doi.org/10.1145/3617232.3624874
https://doi.org/10.1145/3617232.3624874
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_1B-5_24461_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_1B-5_24461_paper.pdf
https://doi.org/10.1145/3689766
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1145/2976749.2978366
https://doi.org/10.1145/2908080.2908081
https://doi.org/10.1145/2908080.2908081

Exploiting Undefined Behavior in C/C++ Programs for Optimization: A Study on the Performance Impact 161:23

[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]

[46]

[47]
[48]

[49]

[50]
[51]
[52]
[53]

[54]

[55]
[56]
[57]
[58]

[59]

[60]

[61]

[62]

[63]

Manasij Mukherjee and John Regehr. 2024. Hydra: Generalizing Peephole Optimizations with Program Synthesis.
Proc. ACM Program. Lang. 8, OOPSLA1, Article 120 (April 2024). https://doi.org/10.1145/3649837

Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. 2009. Producing wrong data without doing
anything obviously wrong!. In ASPLOS. https://doi.org/10.1145/1508244.1508275

Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavyweight dynamic binary instrumentation.
In PLDI https://doi.org/10.1145/1250734.1250746

Thomas Neumann. 2023. C++ Proposal R2771R1: Towards memory safety in C++. https://wg21.link/R2771/1
Alexander Potapenko. 2020.  Fighting Uninitialized Memory in the Kernel. In Clang-Built Linux Meet-
up. https://clangbuiltlinux.github.io/CBL-meetup-2020-slides/glider/Fighting_uninitialized_memory_%40_CBL_
Meetup_2020.pdf

Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Gratian Lup, Jubi Taneja, and John Regehr.
2018. Souper: A Synthesizing Superoptimizer. arXiv:1711.04422

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov. 2012. AddressSanitizer: a fast
address sanity checker. In USENIX ATC. https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: data race detection in practice. In WBIA.
https://doi.org/10.1145/1791194.1791203

Kostya Serebryany, Chris Kennelly, Mitch Phillips, Matt Denton, Marco Elver, Alexander Potapenko, Matt Morehouse,
Vlad Tsyrklevich, Christian Holler, Julian Lettner, David Kilzer, and Lander Brandt. 2024. GWP-ASan: Sampling-Based
Detection of Memory-Safety Bugs in Production. In ICSE-SEIP. https://doi.org/10.1145/3639477.3640328

Zefan Shen. 2022. The Impact of Undefined Behavior on Compiler Optimization. In ESSE. https://doi.org/10.1145/
3501774.3501781

Laurent Simon, David Chisnall, and Ross Anderson. 2018. What You Get is What You C: Controlling Side Effects in
Mainstream C Compilers. In EuroS&P. https://doi.org/10.1109/EuroSP.2018.00009

Sergi Siso, Wes Armour, and Jeyarajan Thiyagalingam. 2019. Evaluating Auto-Vectorizing Compilers through Objective
Withdrawal of Useful Information. ACM Trans. Archit. Code Optim. 16, 4, Article 40 (oct 2019). https://doi.org/10.
1145/3356842

Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert, Per Larsen, and Michael Franz. 2019.
SoK: Sanitizing for security. In SP. https://doi.org/10.1109/SP.2019.00010

Evgeniy Stepanov and Konstantin Serebryany. 2015. MemorySanitizer: Fast detector of uninitialized memory use in
C++.In CGO. https://doi.org/10.1109/CG0O.2015.7054186

Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding compiler bugs via live code mutation. In OOPSLA. https:
//doi.org/10.1145/2983990.2984038

Theodoros Theodoridis and Zhendong Su. 2024. Refined Input, Degraded Output: The Counterintuitive World of
Compiler Behavior. Proc. ACM Program. Lang. 8, PLDI, Article 174 (jun 2024). https://doi.org/10.1145/3656404
Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Ulfar Erlingsson, Luis Lozano, and Geoff Pike.
2014. Enforcing Forward-Edge Control-Flow Integrity in GCC & LLVM. In USENIX Security. https://www.usenix.org/
system/files/conference/usenixsecurity14/sec14-paper-tice.pdf

Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai Zeldovich, and M. Frans Kaashoek. 2012. Undefined
behavior: what happened to my code?. In APSYS. https://doi.org/10.1145/2349896.2349905

Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M Frans Kaashoek. 2012. Improving Integer Security for
Systems with KINT. In OSDI https://www.usenix.org/system/files/conference/osdi12/osdi12-final-88.pdf

Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama. 2013. Towards optimization-safe
systems: analyzing the impact of undefined behavior. In SOSP. https://doi.org/10.1145/2517349.2522728

Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama. 2015. A Differential Approach to
Undefined Behavior Detection. ACM Trans. Comput. Syst. 33, 1, Article 1 (mar 2015). https://doi.org/10.1145/2699678
Zekai Wu, Wei Liu, Mingyue Liang, and Kai Song. 2020. Finding Bugs Compiler Knows but Doesn’t Tell You: Dissecting
Undefined Behavior Optimizations in LLVM. BlackHat Europe (2020). https://i.blackhat.com/eu-20/Wednesday/eu-20-
Wu-Finding-Bugs-Compiler-Knows-But-Does-Not-Tell- You-Dissecting-Undefined- Behavior- Optimizations-In-
LLVM.pdf

Jianhao Xu, Kangjie Lu, Zhengjie Du, Zhu Ding, Linke Li, Qiushi Wu, Mathias Payer, and Bing Mao. 2023. Silent Bugs
Matter: A Study of Compiler-Introduced Security Bugs. In USENIX Security. https://www.usenix.org/system/files/
usenixsecurity23-xu-jianhao.pdf

Shafik Yaghmour. 2019. C++ Proposal P1705R1: Enumerating Core Undefined Behavior. https://wg21.link/P1705

Xi Yang, Stephen M. Blackburn, Daniel Frampton, Jennifer B. Sartor, and Kathryn S. McKinley. 2011. Why nothing
matters: the impact of zeroing. In OOPSLA. https://doi.org/10.1145/2048066.2048092

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In PLDL
https://doi.org/10.1145/1993498.1993532


https://doi.org/10.1145/3649837
https://doi.org/10.1145/1508244.1508275
https://doi.org/10.1145/1250734.1250746
https://wg21.link/R2771/1
https://clangbuiltlinux.github.io/CBL-meetup-2020-slides/glider/Fighting_uninitialized_memory_%40_CBL_Meetup_2020.pdf
https://clangbuiltlinux.github.io/CBL-meetup-2020-slides/glider/Fighting_uninitialized_memory_%40_CBL_Meetup_2020.pdf
https://arxiv.org/abs/1711.04422
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1145/3639477.3640328
https://doi.org/10.1145/3501774.3501781
https://doi.org/10.1145/3501774.3501781
https://doi.org/10.1109/EuroSP.2018.00009
https://doi.org/10.1145/3356842
https://doi.org/10.1145/3356842
https://doi.org/10.1109/SP.2019.00010
https://doi.org/10.1109/CGO.2015.7054186
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/3656404
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-tice.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-tice.pdf
https://doi.org/10.1145/2349896.2349905
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-88.pdf
https://doi.org/10.1145/2517349.2522728
https://doi.org/10.1145/2699678
https://i.blackhat.com/eu-20/Wednesday/eu-20-Wu-Finding-Bugs-Compiler-Knows-But-Does-Not-Tell-You-Dissecting-Undefined-Behavior-Optimizations-In-LLVM.pdf
https://i.blackhat.com/eu-20/Wednesday/eu-20-Wu-Finding-Bugs-Compiler-Knows-But-Does-Not-Tell-You-Dissecting-Undefined-Behavior-Optimizations-In-LLVM.pdf
https://i.blackhat.com/eu-20/Wednesday/eu-20-Wu-Finding-Bugs-Compiler-Knows-But-Does-Not-Tell-You-Dissecting-Undefined-Behavior-Optimizations-In-LLVM.pdf
https://www.usenix.org/system/files/usenixsecurity23-xu-jianhao.pdf
https://www.usenix.org/system/files/usenixsecurity23-xu-jianhao.pdf
https://wg21.link/P1705
https://doi.org/10.1145/2048066.2048092
https://doi.org/10.1145/1993498.1993532

161:24 Lucian Popescu and Nuno P. Lopes

[64] Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic. 2021. Modular,
compositional, and executable formal semantics for LLVM IR. Proc. ACM Program. Lang. 5, ICFP, Article 67 (aug 2021).
https://doi.org/10.1145/3473572


https://doi.org/10.1145/3473572

Exploiting Undefined Behavior in C/C++ Programs for Optimization: A Study on the Performance Impact 161:25

A Disabling Undefined Behavior: Examples for Each Flag

Here we give an example for each flag we used to disable exploitation of undefined behavior (UB).
For each flag, we give an example in C and the corresponding LLVM intermediate representation
(IR) generated by Clang without (left) and with (right) the flag. Note that we simplified the IR to
remove irrelevant details.

A.1 AO1: -fcheck-div-rem-overflow

unsigned f(unsigned a, unsigned b) {
return a / b;

3

define i32 @f(i32 %a, i32 %b) {
; with signed division (sdiv) there is
; an extra check for overflow (INT_MIN/-1)
%cmp = icmp eq i32 %b, 0
br i1 %cmp, label %z, label %nz

define i32 @f(i32 %a, 132 %b) {
%r = udiv i32 %a, %b z:
ret i32 %r ret i32 0

nz:
; never UB
%r = udiv i32 %a, %b
ret i32 %r

A.2 AO2: -fconstraint-shift-value

unsigned f(unsigned a, unsigned b) {
return a << b;

}

define i32 @f(i32 %a, 132 %b) {
%m = and i32 %b, 31
%r = shl i32 %a, %m
ret i32 %r

define i32 @f(i32 %a, i32 %b) {
%r = shl i32 %a, %b
ret i32 %r

} }

A3 AO3: -fwrapv

int f(int a, int b) {
return a + b;

}

define i32 @f(i32 %a, i32 %b) { define i32 @f(i32 %a, i32 %b) {
%r = add nsw i32 %a, %b %r = add i32 %a, %b
ret i32 %r ret i32 %r

} }

A.4 TR1: -fno-constrain-bool-value

bool f(bool *b) {
return *xb > 1;

3



161:26

define i1 ef(ptr %b) {
%val = load i8, ptr %b, !range !1
%r = icmp sgt i8 %val, 1 ; always false
ret i1 %r

11 = 1{i8 0, i8 2} ; the value is in [0, 2)

A.5 TR2:-fno-strict-enums
enum X { A, B, C, D };
bool f(X xe) {

return *e > 3;

3

define i1 @f(ptr %e) {
%val = load i32, ptr %b, !range !1
%r = icmp sgt i32 %val, 3 ; always false
ret i1 %r

117 = 1{i8 0, i8 4} ; the value is in [0, 4)

A.6 FD1: -fignore-pure-const-attrs
int g() __attribute__((const));
int O {

return g() + gQ0);
3

define i32 @f() {
%c = call i32 @g()
%r = mul i32 %c, 2
ret i32 %r

A.7 FD2: -fdrop-ub-builtins
int f(int a) {
__builtin_assume(a > 0);
return a;

3

define 132 @f(i32 %a) {
; Note that no assembly is generated for this

; comparison. It is used just for optimizations.

; It is discarded afterwards.
%cmp = icmp sge i32 %a, 0

; UB if a <= 0

call void @llvm.assume(i1 %cmp)
ret i32 %a

A.8 FD3: -fno-finite-loops

int g();
int fO {
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define i1 @f(ptr %b) {
%val = load i8, ptr %b
%r = icmp sgt i8 %val, 1
ret i1 %r

define i1 ef(ptr %e) {
%val = load i32, ptr %b
%r = icmp sgt i32 %val, 3
ret i1 %r

define i32 @f() {
%c1 = call i32 eg()
%c2 = call i32 eg()
%r = add nsw i32 %c1, %c2
ret i32 %r

define i32 @f(i32 %a) {
; Assembly is generated for the comparison
%cmp = icmp sge i32 %a, 0
br i1 %cmp, label %ok, label %nok

ok:
ret i32 %a

nok :
; exits the process
call void @llvm.trap()
}
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while (1) {
g0;

}

return 0;

3

define i32 e@f() {

br label %loop define i32 e@f() {

br label %loop

loop:
call i32 @g() ; function must have side effects
br label %loop, !1lvm.loop !1

}

117 = 1{!"11lvm.loop.mustprogress"}

loop:
call i32 eg()
br label %loop
}

A.9 PM1: -fdrop-align-attr

struct X {
int a, b;
int f() {
return a + b;
}
b

; Assumes that the "this" pointer points to a memory region with size
; at least that of the struct X (8 bytes).
define i32 @_ZN1X1fEv() (ptr align 4 dereferenceable(8) %this) {

; These loads can be executed speculatively.

%ap = getelementptr inbounds %struct.X, ptr %this, i32 0

%a = load i32, ptr %ap, align 4

%bp = getelementptr inbounds %struct.X, ptr %this, i32 1

%b = load i32, ptr %bp, align 4

%r = add nsw i32 %a, %b

ret i32 %r

define i32 @_ZN1X1fEv() (ptr dereferenceable(8) %this) {
%ap = getelementptr inbounds %struct.X, ptr %this, i32 0
%a = load i32, ptr %ap, align 4
%bp = getelementptr inbounds %struct.X, ptr %this, i32 1
%b = load i32, ptr %bp, align 4
%r = add nsw i32 %a, %b
ret i32 %r

A.10 PM2: -fdrop-deref-attr

struct X {
int a, b;
int f() {
return a + b;
}
b

define i32 @_ZN1X1fEv() (ptr align 4 dereferenceable(8) %this) {
%ap = getelementptr inbounds %struct.X, ptr %this, i32 0, i32 0
%a = load i32, ptr %ap, align 4
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%bp = getelementptr inbounds %struct.X, ptr %this, i32 0, i32 1
%b = load i32, ptr %bp, align 4

%r = add nsw i32 %a, %b

ret i32 %r

define i32 @_ZN1X1fEv() (ptr align 4 %this) {
%ap = getelementptr inbounds %struct.X, ptr %this, i32 0, i32 0
%a = load i32, ptr %ap, align 4
%bp = getelementptr inbounds %struct.X, ptr %this, i32 0, i32 1
%b = load i32, ptr %bp, align 4
%r = add nsw i32 %a, %b
ret i32 %r

A.11 PM3: -fno-delete-null-pointer-checks
bool f(int *p) {

*p = 3;

return p == nullptr;

}

define i1 ef(ptr %p) {

store i32 3, ptr %p define i1 @f(ptr %p) null_pointer_is_valid {
; always false store i32 3, ptr %p

; otherwise the store would be UB %r = icmp eq ptr %p, null

%r = icmp eq ptr %p, null ret i1 %r

ret i1 %r }

A.12 PM4: -fdrop-noalias-restrict-attr

int f(int *restrict p, int *restrict q) {

*p = 35
*q = 4;
return *p;

}

define i32 @f(ptr noalias %p, ptr noalias %q) {
; These two stores can't alias
store i32 3, ptr %p
store i32 4, ptr %q
%r = load i32, ptr %p ; guaranteed to yield 3
ret i32 %r

define i32 @f(ptr %p, ptr %q) {
store i32 3, ptr %p
store i32 4, ptr %q
%r = load i32, ptr %p ; may yield 3 or 4
ret i32 %r

A.13 PM5: -fno-strict-aliasing
int f(int *p, float *q) {

*p = 3;
*q = 4.0;
return *p;

3
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define i32 @f(ptr %p, ptr %q) {
; These two stores can't alias
store i32 3, ptr %p, !tbaa !1
store float 4.0, ptr %q, !tbaa !2
%r = load i32, ptr %p ; guaranteed to yield 3
ret i32 %r

}

; C type hierarchy

19 = !{!"char"}

11 = 1{!"int", !0}

12 = I{!"float", !0}

A.14 PMé: -fno-use-default-alignment

int f(int *p) {
return *p;

}

define i32 @f(ptr %p) {
; assume integers are 4-byte aligned
%r = load i32, ptr %p, align 4
ret i32 %r

A.15 PMZ7: -no-enable-noundef-analysis
int f(int a) {
return a;

}

; assume that function arguments can't be
; undef or poison
define i32 @f(i32 noundef %a) {

ret i32 %a

A.16 PMS: -zero-uninit-loads

int f(bool c) {
int a;
if (c¢)
a=1;
return a;

3

define i32 @f(ptr %p, ptr %q) {
store i32 3, ptr %p
store float 4.0, ptr %q
%r = load i32, ptr %p
ret i32 %r

define i32 e@f(ptr %p) {
%r = load i32, ptr %p, align 1
ret i32 %r

define i32 @f(i32 %a) {
ret i32 %a
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define i32 @f(i1 %c) {
%a = alloca i32
br i1 %c, label %true, label %ret

true:
store i32 1, ptr %a
br label %ret

ret:
%r = load i32, ptr %a
; %r will be replaced with 1 since %a is
; either uninitialized (thus undef)
; or it is 1. undef can be replaced with 1.
ret i32 %r

Lucian Popescu and Nuno P. Lopes

define i32 @f (i1 %c) {
%a = alloca i32
br i1 %c, label %true, label %ret

true:
store i32 1, ptr %a
br label %ret

ret:
%r = load i32, ptr %a
; %r will be simplified to
; "%r = select i1 %c, 132 1, 132 @ since the
; optimizer is forced to assume that
; uninitialized memory is zero.
ret i32 %r

A.17 AAT1: -fdrop-inbounds-from-gep -disable-oob-analysis

int glb;

int f(int *p) {
glb = 2;
pl3] = 4;
return glb;

}

@glb = global i32

define i32 @f(ptr %p) {
; these two stores can't alias because
; if %p can't be inbounds of some offset
; of glb (4 bytes) and that offset plus 12
store i32 2, ptr eglb
%pp = getelementptr inbounds i32, ptr %p, i32 3
store i32 4, ptr %pp
%r = load i32, ptr @glb ; guaranteed to be 2
ret i32 %r

A.18 AA2: disable-object-based-analysis
int f(int i, int j) {

int *p = (intx)malloc(8);
int *q = (intx)malloc(8);
plil = ©0;
ql3il = 1;

return p[0];

@glb = global i32
define i32 ef(ptr %p) {
; these two stores may alias
store i32 2, ptr @glb
%pp = getelementptr i32, ptr %p, i32 3
store i32 4, ptr %pp
%r = load i32, ptr @glb
ret i32 %r
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define i32 @f(i32 %i, 132 %j) {
%p = call ptr @malloc(i64 8)
%q = call ptr @malloc(i64 8)
; these stores can't alias beacause
; pti and g+j are pointers
; based on different objects
%pp = getelementptr inbounds i32, ptr %p, i32 %i
store i32 0, ptr %pp
%qq = getelementptr inbounds i32, ptr %q, i32 %j
store i32 1, ptr %qq
%r = load i32, ptr %p ; guaranteed to yield 0
ret i32 %r
}
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define 132 @f(i32 %i, i32 %j) {
%p = call ptr @malloc(i64 8)
%q = call ptr @malloc(i64 8)
; these stores may alias
%pp = getelementptr inbounds i32, ptr %p, i32 %i
store i32 0, ptr %pp
%qq = getelementptr inbounds i32, ptr %q, i32 %j
store i32 1, ptr %qq
%r = load i32, ptr %p ; we can't assume anything
ret i32 %r
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